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Measurements have been made in nominally two-dimensional turbulent wakes gen-
erated by five different bluff bodies. Each wake has a different level of large-scale
organization which is reflected in different amounts of large-scale anisotropy. Structure
functions of streamwise (u) and lateral (v) velocity fluctuations at approximately the
same value of Rλ, the Taylor microscale Reynolds number, indicate that inertial-range
scales are significantly affected by the large-scale anisotropy. The effect is greater on v
than u and more pronounced for the porous-body wakes than the solid-body wakes.
In particular, ‘relative’ values of the scaling (or power-law) exponents indicate that
the magnitude of the transverse exponents can exceed that of the longitudinal ones
in the porous-body wakes. This is supported by the inertial-range behaviour of the
spectra of u and v. The difference between the transverse and longitudinal exponents
appears to depend on the large-scale anisotropy of the flow, as measured by the ratio
of the variances of v and u and ratio of the integral length scales of v and u. The
spanwise vorticity spectra are much less affected by the anisotropy than the spectra
of u and v.

1. Introduction
The analytical framework introduced by Kolmogorov (1941a, b) for describing

the properties of small-scale turbulence has had an almost immeasurable impact
on turbulence research. There continues to be a strong belief among turbulence
researchers that if a theory of turbulence were to emerge, it would most likely relate
to the small-scale motion whose features tend to exhibit quasi-universal characteristics.
The similarity hypotheses proposed by Kolmogorov (1941a , hereafter K41), provide a
description of turbulence in both the dissipation range (DR), where the scales of the
motion are such that they may be influenced by the kinematic viscosity ν of the fluid,
and the inertial range (IR), loosely defined as the range of scales which lies between
the smallest length scale of the flow (usually identified with the Kolmogorov length
scale η ≡ ν3/4/〈ε〉1/4, where 〈ε〉 is the mean energy dissipation rate) and the largest
length scale (typically identified with the longitudinal integral length Lu, defined in
§ 3). The first hypothesis in K41 states that, in the DR, the probability density function
(p.d.f.) of the velocity increment δα ≡ α(x+ r)− α(r) (r is the separation between the
two points and α stands for u or v or w, the velocity fluctuations in the x (longitudinal
or streamwise), y (mean shear) or z (spanwise) directions) is uniquely determined by
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〈ε〉 and ν so that
〈(δα∗)n〉 = fαn(r

∗), (1.1)

where the asterisk denotes normalization by η and/or UK ≡ (ν〈ε〉)1/4, the Kolmogorov
velocity scale. The second hypothesis states that, in the IR (η � r � Lu),

〈(δα∗)n〉 = Cαnr
∗n/3, (1.2)

where Cαn are the Kolmogorov ‘constants’ (which may depend on the flow macrostruc-
ture). It is important to stress that (1.1) and (1.2) are underpinned by the (related)
assumptions that the Reynolds number is large and the small scales are isotropic.
As was noted by Sreenivasan (1999), K41 supposes that the small scales can be
understood independently of the large-scale motion which may differ from flow to
flow and is likely to be strongly anisotropic.

To account for the small-scale intermittency (or wild and sudden fluctuations in time
and space of ε which lead to strong departures of turbulence quantities from a simple
Gaussian behaviour), Kolmogorov (1962) and Obukhov (1962) (the combination of
these two papers is usually referred to as K62) modified the dimensional arguments
of K41 by replacing 〈ε〉 with εr where the subscript denotes averaging over a length
scale r. In K62, (1.2) becomes

〈(δα∗)n〉 = C+
αn〈ε∗r n/3〉r∗n/3, (1.3)

where the superscript + allows a possible distinction between the premultipliers in

(1.3) and those in (1.2). K62 admits a power-law variation in the IR provided 〈ε∗r n/3〉
has a power-law variation. In this case, 〈(δα∗)n〉 can be expressed (in the IR) as

〈(δα∗)n〉 ∼ r∗ζαn . (1.4)

While K62 offers advantages over K41, it also detracts from the inherent simplicity of
the K41 framework. Regardless of whether one favours K41 over K62 or vice versa,
the main assumptions which underpin K41 also apply to K62 and the reality is that
they are unlikely to be satisfied in flows normally encountered in the laboratory. It
is also dubious whether these assumptions are accurately satisfied in the atmospheric
surface layer, despite the relatively large values of Rλ (a Reynolds number based on

〈u2〉1/2 and λ, the longitudinal Taylor microscale); for example, Sreenivasan & Dhruva
(1998) found that, in the atmospheric surface layer with Rλ ∼ 104, unique values of
the exponents ζαn could not be evaluated unambiguously since the local derivatives of
〈(δα)n〉, with respect to r, continuously decreased with increasing r. Notwithstanding
the difficulty of determining ζαn rigorously, there is significant evidence to suggest
that ζαn may depend on Rλ (e.g. Antonia, Pearson & Zhou 2000), vary from flow to
flow (e.g. Pearson 1999), be affected by the presence of a wall (e.g. Antonia, Romano
& Orlandi 1998), or indeed depend on the initial conditions for nominally the same
flow (e.g. Antonia & Pearson 2000; Romano & Antonia 2001). It is also significant
that, for n = 2, the isotropic equality ζu2 = ζv2 = ζw2 is in general not satisfied by
the data (from both measurements and numerical flow simulations). Typically, the
magnitudes of the transverse exponents ζvn and ζwn tend to be smaller than those of
the longitudinal exponents ζun (in general, transverse exponents can also be associated
with u structure functions but for separations in the transverse directions). The most
likely causes for this inequality are

(i) the effect of Rλ,
(ii) the influence of anisotropy,
(iii) the nature of the flow,
(iv) the differences in initial and boundary conditions.
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It has also been suggested that the sources of small-scale intermittency which affect
longitudinal and transverse structure functions may be different (e.g. Chen et al.
1997) although the evidence is not entirely conclusive (e.g. Zhou & Antonia 2000).
Ideally, each of the above effects should be studied separately. In practice, this is
not always feasible either experimentally or in simulations. Ideally, the study of (i)
should be carried out in the same flow (initial and boundary conditions should remain
unchanged) in the absence of a mean shear or other sources of anisotropy; extraneous
influences, such as that arising from the large-scale intermittency associated with the
presence of a turbulent/non-turbulent interface, should be absent. Published data that
have been used to study (i) were obtained in different flows (and almost invariable
different turbulence intensities) although usually in regions where the mean shear was
negligible.

The aim of the present investigation is to examine the dependence of the small-
scale motion on initial conditions by focusing on nominally the same flow: a two-
dimensional wake generated by different bluff bodies. Both porous and impervious
bodies were chosen because of the differences in the organized motion that have been
observed when the shape and/or porosity of the generator are varied (e.g. Cannon,
Champagne & Glezer 1983; Cimbala, Nagib & Roshko 1988; Zhou & Antonia
1994, 1995; Antonia & Mi 1998) or when, for a fixed shape, the mass injection rate
through the downstream end of the generator is varied (Cimbala & Park 1990; Park
& Cimbala 1991). Although the differences are most pronounced in the near wake,
they do not entirely disappear in the far wake. In association with the differences in
the large-scale organization, and hence in the manner in which the initial injection of
energy takes place, there are differences in the overall or global anisotropy. A measure
of this anisotropy is provided by the ratio 〈v2〉/〈u2〉. In the present experiments, a
significant variation of this ratio was achieved for nominally the same flow and the
same Rλ. The measurements were made only on the wake centreline where the mean
shear is zero and the flow is fully turbulent.

Recently, significant attention has been given to the extraction of anisotropic
contributions from velocity structure functions obtained both in experiment and
numerical simulations (e.g. Arad et al. 1998; Kurien & Sreenivasan 2000; Biferale &
Vergassola 2001; Biferale & Toschi 2001). The approach is based on decomposing
velocity correlations or structure functions in terms of the irreducible representation
of the SO(3) group of spatial rotation in three dimensions (Arad, L’vov & Procaccia
1999b). The isotropic sector of this decomposition is the zero-order term which can be
disentangled from the anisotropic part (Arad et al. 1999a). The primary motivation
for this approach is the elucidation of the apparent persistence of anisotropic effects
on scales in both the inertial and dissipative ranges. Although the approach is quite
promising and encouraging results have been obtained (e.g. Kurien & Sreenivasan
2000; Biferale & Vergassola 2001), the exact projection via spherical harmonics on
each separate sector is not straightforward even for numerical simulation data (e.g.
Biferale & Vergassola 2001). Only incomplete information on the velocity field is
available in the present experiments; for this reason, the SO(3) decomposition has
not been used.

2. Experimental conditions
In this study, a non-return blower-type wind tunnel with a square (350× 350 mm)

2.4 m long working section was used. The inclination of the bottom wall of the
working section was adjusted in order to maintain a zero streamwise pressure gradient.



70 R. A. Antonia, T. Zhou and G. P. Romano

d

d

d

d

d

y

xU1

Wake generators

U1

y

x

∆y

Side view
ωz probe

y

z

∆z

Front view
ωz probe

Figure 1. Sketch showing arrangement of different wake generators, coordinate axes
and spanwise vorticity probe.

Measurements of the spanwise vorticity fluctuation ωz were made on the centreline of
wakes generated by five different bluff bodies, i.e. a solid circular cylinder, a circular
cylinder constructed from a screen (0.5 mm wire diameter with a mesh size of 1.6 mm)
of 54% solidity, a solid square cylinder, a solid plate placed normal to the flow, and
screen strip constructed of the same material as the screen cylinder. In each case
(figure 1), the characteristic dimension (height or diameter) d is the same (25.4 mm).
The generators are introduced 20 cm downstream of the entrance to the working
section and span the full width of the working section. The measurement location
was at x/d = 70. While this distance may be adequate for the mean velocity profile
to become self-preserving, it is unlikely that the Reynolds stresses are self-preserving
there. The choice was thought however to be a reasonable compromise due to the
opposing constraints imposed by the finite length of the working section and the need
to use a sufficiently large value of d for the Kolmogorov length scale to be sufficiently
large. It is well established (e.g. Sreenivasan 1981) that the asymptotic far wake
is approached only slowly, the approaching depending on the manner the wake is
generated. The intent of the present experiment is to study the effect of different large
scale forcings, resulting from different initial conditions, on small-scale statistics at the
same x/d and Taylor microscale Reynolds number Rλ. Before measuring the spanwise
vorticity fluctuations, systematic measurements with a single hot wire were made to
determine the dependence of Rλ on the mean velocity in each wake. Measurements of
ω3 were made at five different values of free-stream velocity for each wake. Details of
experimental conditions in each of the wakes are given in table 1 for approximately
the same Rλ.

The transverse vorticity component ωz was obtained using a four-hot-wire vorticity
probe (sketched in figure 1). This probe consists of a pair of parallel wires c and d
straddling wires a and b of an X-probe. The quantity ωz can be approximated by

ωz =
∆v

∆x
− ∆u

∆y
= −U−1 ∆v

∆t
− ∆u

∆y
, (2.1)
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U u′ v′ fc fs fK 〈ε〉† η UK

Flow (m s−1) (m s−1) (m s−1) (Hz) (Hz) (Hz) (m2 s−3) (mm) Rλ (m s−1) ∆y∗

CC 8.75 0.538 0.482 6300 12903 7150 2.265 0.195 194 0.076 3.8
P 8.27 0.583 0.594 6300 12903 7300 3.090 0.180 195 0.082 4.2
SqC 7.52 0.573 0.539 6300 12903 6506 2.847 0.184 196 0.080 4.2
ScC 6.22 0.457 0.429 4000 8000 4372 1.240 0.227 189 0.065 3.2
SS 15.09 0.861 1.008 25000 50000 19290 13.602 0.125 204 0.119 4.7

†Isotropy has been assumed, i.e. 〈ε〉 was inferred from 〈ε〉iso = 15ν〈(∂u/∂x)2〉
Table 1. Experimental conditions at x/d = 70 and nominally the same value of Rλ. CC denotes

circular cylinder, P plate, SqC square cylinder, ScC screen cylinder and SS screen strip.

where ∆u is the difference between the longitudinal velocity fluctuations from two
parallel hot wires which are separated in the y-direction; ∆v is the difference between
values of v at the same point in space but separated in time by one sampling time
interval ∆t (≈ f−1

s ; fs is the sampling frequency) and U is the local streamwise mean
velocity. Because the turbulence intensity is relatively small (u′i/U1 6 8%, where ui
represents u or v or w and the prime denotes the r.m.s. value), the use of Taylor’s
hypothesis, i.e. ∆/∆x = −U−1∆/∆t in (2.1), should be satisfactory, especially at small
r. A forward differencing scheme was used to convert temporal to spatial derivatives,
the magnitude of ∆x being approximately equal to that of ∆y.

The separation ∆y, which was about 0.75 mm, was adequate since it remained in the
range 3η–5η (e.g. Antonia, Zhu & Kim 1993; Zhu & Antonia 1995). This strategy was
adopted to try and minimize any noise contamination due to too small a separation
and any spectral attenuation due to too large a separation. The wire separation ∆z
between the two inclined wires of the X-probe was about 0.8 mm. Values of ∆z∗ are
not shown in the table since ∆z∗ ' ∆y∗ in each flow. The included angle for the
X-probe was about 105◦, large enough to minimize the effect of large velocity cone
angles (e.g. Browne, Antonia & Chua 1989). The probe comprised 2.5µm diameter
Wollaston Pt–10% Rh wires, each etched to an active length of about 0.5 mm. The
length to diameter ratio of the wire was about 200.

The hot wires were operated with in-house constant temperature circuits at an
overheat ratio of 1.5. Output signals from the anemometers were passed through
buck-and-gain circuits and low-pass filtered at a cut-off frequency fc (see table 1);
fc was chosen after examining the spectrum of ∂u/∂t and identifying the onset of
electronic noise (the procedure was similar to that outlined in Antonia, Satyaprakash
& Hussain 1982). The values of fc were generally close to the Kolmogorov frequency
fK ≡ U/2πη. The filtered signals were then sampled at a frequency of fs ' 2fc into
a PC using a 12 bit A/D converter. The sampling period Ts is in the range 45–100 s
for each wake. The corresponding number of independent samples N (≡ TsU/2L,
e.g. Tennekes & Lumley 1972) is in the range 3000–19 000. These numbers are large
enough for the eighth-order velocity structure functions to converge. This was verified
by examining the closure of the p.d.f. of δα, weighted by |δα|n, for different values of r.

3. Global characteristics of the different wakes
Before discussing the behaviour of the small scales (§§ 4–7), we present here a

few results which characterize the global features of the wakes. A measure of the
anisotropy of the large scales is provided by the turbulence intensity ratio 〈v2〉/〈u2〉,
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Figure 2. Dependence of the Reynolds normal stress ratio 〈v2〉/〈u2〉 on Rλ in each of the wakes:◦, circular solid cylinder; �, solid square cylinder;4, solid normal plate; O, screen strip; ⊗, circular
screen cylinder.

where 〈v2〉 and 〈u2〉 are the variances of v and u. Figure 2 indicates that, in general,
the magnitude of this ratio differs significantly from flow to flow. In particular, it is
largest for the screen strip and smallest for the circular cylinder. Note that for both
the screen strip and the plate, 〈v2〉 is larger than 〈u2〉, while in the other three wakes,
it is 〈u2〉 that is larger. The values of 〈v2〉/〈u2〉 are nearly identical for the square
cylinder and the screen cylinder. There is a slight tendency for 〈v2〉/〈u2〉 to increase
with Rλ although, arguably, the ratio may become constant at sufficiently large Rλ.
Overall, the results of figure 2 imply that, in almost every case, the large scales are
likely to exhibit differences, either topologically or in terms of the strength of the
vortices (e.g. Cimbala et al. 1988; Zhou & Antonia 1994). Most of the variation in
〈v2〉/〈u2〉 is caused by changes in 〈v2〉 rather than in 〈u2〉.

It is well established that v is a more sensitive indicator of the large-scale organiz-
ation than u (e.g. Papailiou & Lykoudis 1974). Spectra or, equivalently, correlations
can be used to highlight possible differences in this organization. The autocorrelation
coefficients ρα ≡ 〈α(x)α(x+ r)〉/〈α2〉 shown in figure 3, both for α ≡ u (figure 3a) and
α = v (figure 3b), are inferred from temporal autocorrelations via Taylor’s hypothesis.
Clearly, the organization can be more readily distinguishable in ρv . In particular,
the ρv distributions for the screen strip and screen cylinder exhibit significant quasi-
periodicity, which is consistent with previous topological information gathered for
porous-body wakes (e.g. Zhou & Antonia 1994, 1995). Zhou & Antonia (1994) noted
that at x/d = 20, the Strouhal number corresponding to the peak in the v spectrum
was significantly larger (' 0.28) for the screen-strip wake than for circular and
triangular cylinders (' 0.20) and a square cylinder (' 0.12). Although the vortex street
disappears when the solidity of the screen is less than about 80% (Castro 1971), the
near-wake region is dominated (Huang & Keffer 1996) by the vortices in the mixing
layers originating from the edges of the mesh. The sectional streamlines obtained
by Zhou & Antonia revealed the presence of mixing-layer vortices while recent flow
visualizations, carried out using the smoke-wire technique, have confirmed that these
vortices undergo pairing thus supporting the suggestion (Antonia & Mi 1998) that the
strength of these vortices increases with x in the near wake. No visualizations have
been made for the screen cylinder wake; it is unlikely that this flow will be dominated
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Figure 3. Autocorrelation coefficients of u and v in each wake at Rλ ' 200. (a) ρu; (b) ρv . - - -, solid
circular cylinder; - - - - - -, solid square cylinder; — - —, solid normal plate; — - - —, screen strip;
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by the evolution of mixing layers that is a feature of the screen strip wake. Although
figure 3 points to a strong quasi-periodicity for the screen cylinder wake, it is plausible
that the flow topology associated with this generator will differ substantially from
that corresponding to the screen strip. This issue needs to be investigated further.

Estimates of the integral length scale Lα (α ≡ u or v) were obtained by integrating
ρα, namely Lα = U

∫ rα
0
ρα(r) dr, where rα denotes the separation at which ρα is zero

and stops oscillating (rα corresponds essentially to the first zero crossing for α ≡ u but
not for α ≡ v). The ratio Lv/Lu is plotted against Rλ in figure 4. As for 〈v2〉/〈u2〉, the
magnitude of Lv/Lu varies appreciably between the different wakes, due principally to
changes in Lv . There is however no perfect correlation between the two ratios although
they both are smallest in the solid cylinder wake. Lv/Lu is largest for the normal plate
whereas the largest value of 〈v2〉/〈u2〉 is obtained in the screen strip wake. The ratio
Lv/Lu also provides a measure of isotropy since

∫ ∞
0
ρv(r) dr = (1/2)

∫ ∞
0
ρu(r) dr when

isotropy is assumed. Figure 4 suggests that in all cases Lv/Lu is significantly smaller
than the isotropic value of 0.5.

Perhaps paradoxically, indirect information about the influence of the large scales
on the small scales may be inferred by simply considering the value (appropriately
normalized) of the mean energy dissipation rate 〈ε〉. Indeed, 〈ε〉 is expected to become
independent of ν when the Reynolds number is sufficiently large. There is significant
evidence to indicate that while the dimensionless parameter Cε ≡ 〈ε〉Lu/u′3 asymptotes
to a constant value at sufficiently large Rλ, its magnitude depends on the nature of
the flow and, in a given flow type, on the initial flow conditions. In view of the
range of initial conditions covered in the present study, it is of interest to examine
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Figure 4. Variation with Rλ of the integral length scale ratio Lv/Lu in each of the wakes.
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Figure 5. Variation with Rλ of the mean energy dissipation rate parameter Cε (≡ 〈ε〉Lu/u′3)
in each of the wakes. Symbols are as in figure 2.

the behaviour of Cε. Figure 5 shows that indeed Cε depends significantly on the
initial conditions. Its magnitude is as small as 0.6 for the screen strip wake and as
large as 1.6 in the wake of the solid cylinder. Comparison between figures 2 and
5 indicates that Cε is small when 〈v2〉/〈u2〉 is large and vice versa; this implies a
connection between 〈ε〉, a small-scale quantity, and the anisotropy of the large-scale
motion. Values of Cε were recently reported by Antonia & Pearson (2000) for the
solid cylinder and flat plate wakes; the measurements were made in the same tunnel
but d was slightly bigger (28.25 mm) and x/d (' 54) smaller. Whilst the values of Cε
agree closely for the flat plate, the values of Cε in the solid cylinder wake were larger
(Cε decreased from about 2 at Rλ = 200 to about 1.8 at Rλ ' 300), possibly implying
a greater sensitivity to initial conditions for the circular cylinder wake than for wakes
(e.g. from the flat plate) where the separation points are fixed.

Isotropic estimates of 〈ε〉 were used for figure 5. Although there are departures from
isotropy at the level of the derivative variances contained in 〈ε〉, the deviation tends
to be in opposite directions for the different derivatives we were able to measure; this
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may have a compensating effect in terms of producing a near equality between the
true value of 〈ε〉 and its isotropic counterpart 〈ε〉iso so that the effect on figure 5 is
unlikely to be significant. Information presented in § 7 suggests that the departures
from isotropy are similar in each wake; this feature indicates that the connection
between Cε and 〈v2〉/〈u2〉 shown in figure 5 is not affected by the assumption of local
isotropy used in determining 〈ε〉. Further, the use of 〈ω2

z 〉 data via the (isotropic)
relation 〈ε〉 = 3ν〈ω2

z 〉 yielded values of Cε which are essentially identical to those in
figure 5 (to avoid crowding the figure, values of Cε estimated using 〈ε〉 = 3ν〈ω2

z 〉 are
not shown in figure 5).

It is finally worth commenting on how the local value of Rλ is related to Rd, i.e.
the Reynolds number that is generally quoted in wake studies. For a self-preserving
wake, it can be shown, starting with the definition of λ and the use of isotropy
[〈ε〉 = 15ν〈(∂u/∂x)2〉], that on the flow centreline

Rλ = 151/2C−1/2
ε C2

1C
1/2
2 C

1/2
3 R

1/2
d , (3.1)

with u′/U0 = C1, U0/U1 = C2[(x − x0)/d]
−1/2 and L/d = C3[(x − x0)/d]

1/2 (L is the
mean velocity half-width, x0 is the effective flow origin, U0 is the maximum velocity

defect and U1 is the free-stream velocity). Figure 6 indicates that the ratio Rλ/R
1/2
d

is approximately constant in each wake, as indicated by (3.1). The magnitude of the
ratio varies significantly from flow to flow, which is not inconsistent with (3.1) since
Cε, C1, C2, C3 may all depend on the initial conditions. Note that the trend exhibited
in figure 6 is not easily reconcilable with that in figure 5. For example, the smallest

values of Rλ/R
1/2
d occur in the wake from the screen strip whereas Cε is smallest in

this flow. It is possible that the effect due to Cε is more than cancelled by that from
the other three parameters. We do not have data for C2 and C3 and cannot therefore
comment on whether the present data are fully consistent with (3.1).

It should be underlined however that the assumptions (self-preservation and local
isotropy) used in deriving (3.1) are, at best, only approximately satisfied by the present
experiments. Nonetheless, the results of figure 6 serve as a reminder that, in the context
of designing an experiment with the aim of achieving a particular value or range of
values for Rλ, the effect of initial conditions cannot be ignored.
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Figure 7. Kolmogorov-normalized second-order velocity structure functions in each wake

(Rλ ' 200). Line types are as in figure 3. (a) 〈(δu∗)2〉; (b) 〈(δv∗)2〉.

4. Velocity structure functions
In view of the recent evidence regarding the dependence on Rλ of Kolmogorov nor-

malized second and higher even order velocity structure functions over the dissipative
and inertial ranges of scales (Pearson 1999; Antonia et al. 2000), it is important to
compare 〈(δu∗)2〉 and 〈(δv∗)2〉, obtained in the different wakes at approximately the

same value of Rλ. Distributions of 〈(δu∗)2〉 and 〈(δv∗)2〉 are plotted in figures 7(a) and
7(b) against r∗. For values of r∗ in the dissipative range (roughly r∗ 6 10) there is
reasonable collapse for 〈(δu∗)2〉 whereas the collapse for 〈(δv∗)2〉 is of poorer quality.
This behaviour is not surprising since

Lt
r∗→0
〈(δu∗)2〉 =

r∗2

15
(4.1)

when local isotropy is assumed. Since 〈ε〉iso was used here, the collapse for 〈(δu∗)2〉 is
essentially ensured. On the other hand (the assumption of local isotropy is retained)

Lt
r∗→0
〈(δv∗)2〉 = a

r∗2

15
(4.2)

with a ≡ 〈(∂v/∂x)2〉/〈(∂u/∂x)2〉. The lack of collapse in 〈(δv∗)2〉 (figure 7b) reflects
slight departures from local isotropy, namely slight departures of a from 2, its
isotropic value. At the largest values of r∗ (in excess of L∗u or L∗v ), there is nearly

perfect collapse for 〈(δu∗)2〉 but the distributions for 〈(δv∗)2〉 vary appreciably. This
behaviour is consistent with the following expectations (local isotropy is once more
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assumed):

Lt
r∗→∞〈(δu

∗)2〉 = 2〈u∗2〉 = 2(15)−1/2Rλ (4.3)

and

Lt
r∗→∞〈(δv

∗)2〉 = 2〈v∗2〉 = 2

( 〈v2〉
〈u2〉

)
(15)−1/2Rλ. (4.4)

Since Rλ is constant, 〈(δu∗)2〉 must remain constant. The level of support for this by
the results in figure 7(a) underlines that departures from local isotropy, an assumption
used in estimating 〈ε〉, are small. Accordingly, the large variation in the limiting value

(large r∗) of 〈(δv∗)2〉 exhibited in figure 7(b) cannot be attributed to departures from

local isotropy. The large-r∗ limit of 〈(δv∗)2〉 is expected to be constant (for different
wakes) provided 〈v2〉/〈u2〉 is constant. Isotropy at all scales (or global isotropy)
requires 〈v2〉/〈u2〉 to be 1. The results of figure 2 indicate that this requirement
is clearly violated in the present experiments.

Although the 〈(δu∗)2〉 distributions approach a plateau at large r∗ in a relatively

smooth fashion, most of the 〈(δv∗)2〉 distributions exhibit oscillations before becoming
constant. This behaviour is most noticeable for the two porous-body wakes, the
largest oscillation occurring in the wake from the screen strip. The strong oscillations
of 〈(δv∗)2〉 for the porous-body wakes are consistent with the topological features
observed by Zhou & Antonia (1994, 1995) for such types of wakes and with the
present autocorrelations of v in figure 3(b).

It almost follows from the behaviour of 〈(δv∗)2〉 at large r∗ that the difference in
the large-scale motion between the various wakes will be felt at smaller vales of r∗,
almost certainly those that would normally be associated with the inertial range and
arguably those that are identifiable with the dissipative range. The imperfect collapse
in the range r∗ 6 10 very likely reflects, at least for the present moderate value of
Rλ, the influence of the anisotropic large-scale motion on the isotropy of the smallest
scales. The effect on scales in the range 20 6 r∗ 6 200 is significant, especially for
〈(δv∗)2〉. That this effect is inextricably linked to the difference between the large-scale
motions in the different wakes is strongly supported by the fact that other parameters,
such as Rλ and the local mean shear, which can affect this range of scales, have been
kept constant. It was of interest here to examine 〈(δu∗)2〉 and 〈(δv∗)2〉 obtained in the

same wake but over a range of Rλ. Distributions of 〈(δv∗)2〉 are shown in figure 8
for only two wakes over the range of Rλ covered in the present experiments. In the
range 20 6 r∗ 6 200, the variation of 〈(δv∗)2〉 in the solid body wake (figure 8a)

is comparable to the variations (figure 7b) of 〈(δv∗)2〉 between different wakes (at
Rλ = 200). For the porous-body wake (figure 8b) the variation with respect to Rλ is
smaller than that indicated in figure 7(b).

The variation in local slope, over the range 20 6 r∗ 6 200, of the distributions of
〈(δu∗)2〉 and 〈(δv∗)2〉 in figures 7(a) and 7(b) implies that the concept of an inertial

range (over which 〈(δα∗)2〉 has a power-law behaviour) may not be tenable here. To

highlight this, the local slope βα ≡ d[log10〈(δα∗)2〉]/d(log10 r
∗) is plotted in figure 9.

The magnitude of βα must vary between 2 at small r∗, since 〈(δα∗)2〉 ∼ r∗2 as r∗ → 0,

and 0 at large r∗ since 〈(δα∗)2〉 → 2〈α∗2〉 as r∗ → ∞. Following the sharp decrease
across the dissipative range, the magnitude of βα decreases more slowly over the range
20 6 r∗ 6 200 (1.3 6 log10 r

∗ 6 2.3); somewhat surprisingly, this is more discernible

in 〈(δv∗)2〉 (figure 9b) than 〈(δu∗)2〉 (figure 9a). There is however no region over which
βα can be regarded as constant, thus emphasizing that there is no range over which
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Figure 8. Dependence on Rλ of Kolmogorov-normalized second-order moments of δv in two wake
flows. (a) Solid flat plate: – –, Rλ = 165; - - -, 195; — - —, 236; — - - —, 262; - - - - - -, 276.
(b) Circular screen cylinder: Rλ = 189; - - -, 214; — - —, 229; — - - —, 277; - - - - - -, 283.

〈(δα)2〉 has a power-law dependence and implying that the inertial range concept of
K41 is not valid in the present context. For reference, the K41 value of βα(= 2/3) is
shown in figures 9(a) and 9(b).

Further confirmation of lack of homogeneity and isotropy in the range 20 6 r∗ 6
200 is provided by figure 10 where −〈(δu∗)3〉/r∗ is shown for each wake. Despite
Rλ remaining constant, there is an appreciable variation in the distributions. None
of the distributions suggest the existence of a region where −〈(δu∗)3〉 varies linearly

with r∗. In particular, the peak value of −〈(δu∗)3〉/r∗ is significantly smaller than
the value of 4/5 predicted by Kolmogorov (1941b) for locally homogeneous and
isotropic turbulence. Its magnitude and the corresponding location vary significantly
between different wakes. The overall trend in figure 10 points to a different kind of
inhomogeneity in almost every wake. This inhomogeneity would need to be retained
in the Navier–Stokes equations in order to ‘generalize’ the Kolmogorov equation;
such an approach was recently adopted by Danaila et al. (1999, 2001) both for
grid turbulence and the central region of a fully developed turbulent channel flow.
Although this approach has not been applied to the present flow, it should be noted
that, in the limit of large r∗, the ‘generalized’ equation would need to correctly reflect
the turbulent energy budget on the wake centreline, i.e. that 〈ε〉 is balanced by the
turbulent advection and the turbulent diffusion. Further, the relative magnitudes of
these three quantities are likely to vary slightly among the different wakes.

Isotropy requires that 〈(δv∗)3〉 is zero everywhere. Figure 11 indicates that whilst,

arguably, this requirement is satisfied for r∗ 6 10, 〈(δv∗)3〉 varies appreciably in
the region 20 6 r∗ 6 200. Note that the scale used for the ordinate in figure 11
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Figure 10. Distributions of −〈(δu∗)3〉/r∗ in each wake at Rλ ' 200. Line types are as in figure 3.

is considerably bigger than that in figure 10 in order to accommodate the large
excursions of 〈(δv∗)3〉 in the screen strip wake. For the other wakes, the variation

cannot be neglected, either in terms of its magnitude or its sign (for r∗ & 10, 〈(δv∗)3〉
can either increase or decrease with respect to r∗).
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Figure 11. Distributions of 〈(δv∗)3〉 in each wake at Rλ ' 200. Line types are as in figure 3.

5. Scaling exponents
The implication from figure 9 is that it is strictly not possible to quote unique

values of the scaling exponents associated with the second-order velocity structure
functions. It may be possible to ‘quote’ values of βα which represent averages over the
scaling range. This was not attempted as it involves some arbitrariness in selecting
the beginning and end of the range. We have however adopted the widespread
practice of estimating ‘relative’ values of the exponents via the extended self-similarity
(ESS) method (Benzi et al. 1993). In this method, the distributions of 〈|(δα)n|〉 are
plotted against 〈|(δu)3|〉 with the slopes usually being determined over a range for
which 〈|δu|3〉 is assumed to increase linearly with r∗. In reality, like 〈(δu∗)3〉, 〈|(δu∗)|3〉
does not increase linearly with r∗. Figure 12 indicates that the magnitude of the
local slope d[log10〈|(δu∗)|3〉]/d[log10 r

∗] decreases continuously with increasing r∗, a
variation which is qualitatively similar to that exhibited by figure 9. In particular,
figure 12 emphasizes that the data do not support a linear behaviour (horizontal line
in figure 12).

Notwithstanding the shortcoming of the assumption 〈|(δu∗)|3〉 ∼ r∗, it is of interest
to compare the ESS values of ζαn among the different wakes. Figure 13 shows that
the magnitude of ζun does not vary significantly, although the magnitudes for the
screen cylinder wake are consistently smaller than for the other wakes, particularly
as n increases. Overall, the magnitudes of ζun are in reasonable agreement with those
predicted by the log-normal model (Kolmogorov 1962) with an intermittency exponent
µ of 0.2 (e.g. Sreenivasan & Kailasnath 1993) and the model of She–Leveque (1994);
they also agree reasonably well with the measurements of Anselmet et al. (1984) and
the simulations of Vincent & Meneguzzi (1991). As expected, given the moderate
value of Rλ, the magnitudes of ζvn are, in general, significantly smaller than those of
ζun. More importantly however, there is a significant variation among the different
wakes, in both the magnitude of ζvn and also its rate of increase with respect to n.
For the porous-bodies, the rate decreases as n increases by comparison to that for
the solid-body wakes. In figure 14, the difference (ζun − ζvn) is plotted against n. It
is evident that, at least for n 6 6, this difference is smaller for the porous than the
solid-body wakes, the smallest values occurring in the screen strip wake. For this
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Figure 13. ESS scaling exponents associated with 〈(δu)n〉 and 〈(δv)n〉 as a function of n. Note that
different origins are used for ζnu and ζnv . Symbols are as in figure 2. – –, K41; - - -, log-normal model
(K62) with µ = 0.2; — - —, model of She–Leveque (1994).

latter flow, (ζun− ζvn) is negative for n = 2, 3, 4, apparently reflecting the fact that 〈v2〉
is 37% larger than 〈u2〉 in this particular flow (figure 2). The moderately low values of
Lv/Lu for this flow, figure 4, are a further contributing factor. Figure 15 suggests that
there is no clear-cut dependence of (ζun− ζvn) (for n = 2 and 4) on the ratio 〈v2〉/〈u2〉,
due mainly to the disparity in the magnitude of (ζun− ζvn) between the screen cylinder
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(a) n = 2; (b) n = 4: ◦−−−◦, measured; �−−−�, estimates using model (equation (5.1)).

wake and the square cylinder wake (for these two flows, 〈v2〉/〈u2〉 is approximately the
same, equal to about 0.89). Nevertheless, the lower values of (ζun − ζvn) for the screen
cylinder wake are commensurate with the smaller value of Lv/Lu in this flow, relative
to the square cylinder wake. Further, they can be captured by a model (Romano &
Antonia 2001) described briefly below, which takes into account the effect of both
〈v2〉/〈u2〉 and Lv/Lu on the relative behaviours of 〈(δu∗)2〉 and 〈(δv∗)2〉.

The main requirement of the model is that the asymptotic behaviour of nth-order



Small-scale turbulence characteristics 83

structure functions (e.g. Frisch 1995) at very small and large r∗ should be reproduced
correctly. As r∗ → 0, 〈(δα∗)n〉 → Aα(n)r

∗n, whereas as r∗ → ∞, 〈(δα∗)n〉 → 2Bα(n)α
′∗n

(where α ≡ u or v and the prefactors Aα(n) and Bα(n) depend on the Reynolds number).
Expressions for Aα(n) and Bα(n) are given for n = 2, 4 in Romano & Antonia (2001).
It is also necessary to specify the limiting values for r∗. At the lower end, r∗ ∼ 1,
whereas r∗ is taken proportional to L∗α at the upper end. Effective length scales (which
are multiples of η and Lα) are introduced as suggested by Sreenivasan (1995), namely
η∗αeff

(= ηαeff
/η) and L∗αeff

(= Lαeff
/η). The scaling exponents of the nth-order structure

function are approximated by

ζαn =
log[2Bα(n)α

′∗n]− log[Aα(n)η
∗n
αeff

]

log(L∗αeff
)− log(η∗αeff

)
=

logCα(n)

logDα
, (5.1)

where Cα(n) = (2Bα(n)α
′∗n)/(Aα(n)η∗nαeff

) and Dα = Lαeff
/ηαeff

. The model contains explicit

information about α′ and Lα, thus allowing estimates of the scaling exponents which
take into account the anisotropy of the large scales.

The same values of ηαeff
(' 10η), Lueff

(' Lu) and Lveff
(' 3Lv) were chosen for all

the wakes. There is some arbitrariness in the choice of Lveff
; this choice was mainly

dictated by the need to identify the large-scale plateau in 〈(δv∗)2〉 correctly. The use of
Lveff
' Lv would have restricted the evaluation of the scaling exponents to the interval

5 6 r∗ 6 40, which is likely to be too influenced by dissipative-range scales and,
perhaps more importantly, insufficiently affected by large scales. With Lveff

' 3Lv ,
the exponents are evaluated over the range 15 6 r∗ 6 100, which is almost identical
to that used for 〈(δu)n〉. The difficulty in choosing Lveff

arises in flows, such as the
present wakes, which are characterized by large-scale oscillations in the correlation
coefficients (figure 3) and second-order structure functions (figure 7b) of v.

The model-based estimates of (ζun − ζvn) are shown in figure 15 as a function of
〈v2〉/〈u2〉. They are in reasonable agreement with measurements for n = 2 (figure
15a). For n = 4 (figure 15b), there is some departure from the measured values,
especially for the porous wakes. This reflects the inability of the model to mimic the
oscillations of 〈(δv)2〉 in the latter flows. However, both figure 15(a) and figure 15(b)
confirm that the overall effect of the different large-scale anisotropies in the different
wakes is captured satisfactorily by the model. In particular, the measured differences
between the screen and square-cylinder wakes (for which 〈v2〉/〈u2〉 is nearly the same,
but Lv/Lu is different) are also reproduced by the model.

6. Spectra
Although structure functions and spectra are mathematically related, the translation

between the power-law exponents in the physical and spectral domains is not exact,
particularly since the power-law behaviours (rζα2 and k−mα1 , where ζα2 = 2/3 and
mα = 5/3 with K41) are expected to apply only over finite ranges (e.g. Hou et al.
1998). Antonia & Smalley (2000) noted that mu is smaller than (1 + ζu2) in a rough-
wall boundary layer (Rλ 6 400). For completeness, Kolmogorov normalized spectra
of u and v are presented in figure 16. The normalized spectral density function
φ∗α(k∗1) is defined such that

∫ ∞
0
φ∗α(k∗1) dk∗1 = 〈α∗2〉, where k1 is the one-dimensional

wavenumber (≡ 2πf/U). Recall that 〈α∗2〉 is equal to half the value corresponding

to the plateau in 〈(δα∗)2〉. The expected dependence of 〈α∗2〉 on Rλ, e.g. (4.3) and
(4.4), is primarily reflected at small wavenumbers since there is seemingly good
collapse at large wavenumbers (k∗1 > 0.02), notwithstanding the contamination due
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Figure 16. Kolmogorov-normalized spectra of u and v at the same Rλ (' 200) in each of the
wakes. Line types are as in figure 3. (a) u; (b) v.

to electronic noise which is evident near k∗1 = 1. The departures among the different
wakes, either for φ∗u(k∗1) or φ∗v (k∗1), in the range k∗1 6 0.02 are not surprising in view
of the normalization. However, the use of scales (e.g. 〈α2〉 and Lα) associated with
the energy-containing structures cannot collapse the curves in this range since the
shape and peak values of φ∗v (k∗1) differ, especially betwen porous and solid body
wakes. In the context of the spectra, the use of 〈ε〉iso in calculating the Kolmogorov

scales imposes the constraint
∫ ∞

0
k∗1

2φ∗α(k∗1) dk∗1 = constant (1/15 for α ≡ u and 2/15
for α ≡ v). This is a different type of constraint, possibly a less restrictive one,
than that imposed on the structure functions at small r∗. A possible consequence
of the different constraints is the slightly different dependence on Rλ exhibited by
the spectra in figure 17 than that displayed by 〈(δv∗)2〉 in figure 8 when the focus
is on the range of scales lying between the dissipative range and that associated
with the large structures. The systematic evolution of Rλ in figure 8 is much less
discernible in figure 17, especially for the screen cylinder (figure 17b). The dependence
on Rλ in the range k∗1 6 0.01 (figure 17) is as unambiguous as that in figure 8 but
it would appear that the plateau in figure 8 exerts a more direct influence on the
inertial range than in figure 17. As was noted by Antonia & Smalley (2000), the
power-law behaviour appears (at least on a log-log presentation) more convincing
for φ∗v (k∗1) than 〈(δv∗)2〉. We have not attempted here to estimate mα via a trial and
error method by optimizing the ‘plateaux’ in plots of k∗1

mαφ∗α(k∗1), as in Mydlarski &
Warhaft (1996), Sreenivasan (1996) or Antonia & Smalley (2000). However, in order
to provide comparison with βα (figure 9), the velocity spectra were differentiated after
first applying a high-order polynomial fit using the procedure of Kim & Antonia
(1993). Distributions of γα ≡ d[log10 φ

∗
α(k
∗
1)]/d[log10 k

∗
1] are shown in figure 18 over
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(a) solid flat plate; (b) circular screen cylinder. Line types are as in figure 8.

one decade in wavenumber (0.01 6 k∗1 6 0.1 or −2 6 log10 k
∗
1 6 −1). In general,

there is no region in which γα can be clearly regarded as constant; this is consistent
with the earlier inference from figure 9. Figure 18(a) indicates that, except for the
screen strip wake, γu continually decreases as k∗1 increases, with a possible tendency
towards a plateau for the square cylinder and flat-plate wakes. By contrast, all the γv
distributions (figure 18b) exhibit a waviness; this is more pronounced for the porous-
body wakes. If an average value of (−γα) is loosely identified with mα, the magnitude
of this latter quantity is larger for the porous-body wakes than the solid-body wakes
at least when α ≡ v. In the porous wakes, mv is closer to the K41 value (5/3) than for
the other three wakes. The largest values of mu and mv are observed for the screen
strip; this is consistent with the indication from figure 9 that the largest values of βα
also occur for this flow.

7. Vorticity characteristics
It follows from its definition that vorticity fluctuations should be more characteristic

of the small-scale motion than the velocity fluctuations. It is therefore of interest to
consider various statistics of ωz , such as its variance, p.d.f. and spectral density func-
tions. Because of the imperfect spatial resolution of the probe, the high-wavenumber
part of the vorticity spectrum is attenuated. Corrections for this attenuation were
made, by assuming local isotropy, according to the procedures outlined in Antonia,
Shafi & Zhu (1996). Distributions of the corrected spectra φ∗ωz (k

∗
1) are shown in

figure 19. Allowing for the uncertainty associated with the corrections, the collapse is
quite reasonable, especially for k∗1 & 0.01 with evidence of a small variation between
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Figure 19. Kolmogorov-normalized spectra of ωz at the same Rλ (' 200) in each of the wakes.
Line types are as in figure 3.

the different wakes at smaller wavenumbers. The isotropic calculation of the vorticity
spectrum (e.g. Van Atta 1991; Kim & Antonia 1993)

φcalωz (k1) = 5
2
φ∂u/∂x(k1)− k1

2

∂φ∂u/∂x(k1)

∂k1

+ 2

∫ ∞
k1

φ∂u/∂x(k)

k
dk (7.1)

is also shown in figure 19 for comparison with the corrected vorticity spectra. The
comparison indicates that isotropy is satisfied for k∗1 & 0.01 while the departure
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between measurement and calculation in the range k∗1 6 0.01 reflects different degrees
of departure from isotropy. The presentation in figure 20, where k∗1φ∗ωz (k

∗
1) is plotted

on a linear scale against log k∗1, allows wavenumbers which contribute most to 〈ω∗z 2〉
to be identified. Accordingly, the peak in the distribution occurs near k∗1 ' 0.2 as was
observed in the simulations of She et al. (1993) and the measurements of Antonia et
al. (1996). The latter authors suggested that a possible interpretation of the spectral
peak is that the vortical structures which contribute most to the enstrophy translate
with a frequency corresponding to k∗1 ' 0.2, providing the convection velocity Uc

of the structures is approximately equal to the local mean velocity. Differences in
the convection velocity of the vortices are expected however, especially between
the porous-body wakes (where Uc ' U) and the solid-body wakes where Uc can
be slightly larger than U (cf. Zhou & Antonia 1992, 1993, 1994). This variation
in Uc may be responsible for the ‘fuzziness’ near the peak in figure 20. Another
interpretation of the peak is that the most intense structures have a characteristic
dimension of about 5η; this value would be the same in all the wakes. The corrected
vorticity variance 〈ω∗z 2〉, obtained by integrating the corrected vorticity spectrum, i.e.∫ ∞

0
φ∗ωz (k

∗
1) dk∗1 = 〈ω∗z 2〉, is plotted in figure 21 against Rλ. The values are nearly equal

in all the wakes and approximately independent of Rλ. In homogeneous turbulence,
the Kolmogorov-normalized enstrophy must be equal to 1 since 〈ε〉 = ν〈ω2〉. If local

isotropy is assumed, 〈ω2
x〉 = 〈ω2

y〉 = 〈ω2
z 〉 so that 〈ω∗z 2〉 = 1/3. The values shown in

figure 21 are, on average, about 7% larger than 1/3. It should be recalled however
that 〈ε〉iso has been used and it may be speculated that it underestimates the true mean

energy dissipation rate, thus accounting for the observed inequality 〈ω∗z 2〉 > 1/3. Some
support for this speculation is provided by values of the ratio 〈(∂v/∂x)2〉/〈(∂u/∂x)2〉,
which are, typically, about 15% larger than the isotropic value of 2. However, the ratio
〈(∂u/∂y)2〉/〈(∂u/∂x)2〉 is typically about 20% smaller than 2. A definite assessment
cannot therefore be made with respect to whether 〈ε〉 is indeed greater than 〈ε〉iso on
the basis of the limited number of components of 〈ε〉 than are available to us.

Distributions of pωz , the p.d.f. of ωz where
∫ ∞
−∞ pωzdωz = 1 are shown in figure 22,

with ωz normalized by its r.m.s. value. The collapse among the different wakes (it is
not possible to distinguish between different lines in figure 22) is consistent with the
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collapse of the ωz spectra (figures 20, 21). It is also consistent with the constancy
of Rλ. Antonia & Zhou (2000) presented measurements, obtained in several flows,
which showed an evolution of p(ωz) with Rλ. The tails of the p.d.f. spread out
further as Rλ increased whereas the shape contracted and the amplitude increased
around ωz = 0, suggesting an increase in intermittency as Rλ increases. For the data
considered by Antonia & Zhou (2000), 〈ω∗2z 〉 was, as for the present data, independent
of Rλ. Certainly, local isotropy imposes a constraint on the shape of the p.d.f., since∫ ∞
−∞ω

∗2
z p(ω

∗
z )d(ω∗z ) should be equal to 1/3, as it does in the case of the spectrum. It is

nonetheless interesting that, unlike the velocity spectra or velocity structure functions,
the spectra (and p.d.f.) of ωz appear not to be affected in any significant way by the
differences in large-scale organization between the various wakes. A perfect collapse
of p(ωz) would imply that all moments of ωz should be the same for each wake. The
present data suggest that Fωz , the flatness factor of ωz , is in fact slightly larger in
the two porous-body wakes (10.5 and 10.9) than in the three solid-body wakes (7.6,
8.2 and 8.3). This in turn implies a more enhanced small-scale intermittency for the
former than the latter flows.
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8. Conclusions
The present study was carried out mainly to provide information on the effect

of initial conditions for nominally the ‘same’ flow (a two-dimensional turbulent
wake) on the small-scale motion at effectively the same value (' 200) of Rλ, the
Taylor microscale Reynolds number. Associated with each of the five different wakes
were various degrees of large-scale organization and different levels of anisotropy,
as measured by the ratios 〈v2〉/〈u2〉 and Lv/Lu. Measurements were made with a
spanwise vorticity probe on the wake centreline where the mean shear is zero and the
flow is fully turbulent, so that there is no influence from the intermittency associated
with the turbulent/non-turbulent interface.

In the dissipative range, the distributions of 〈(δv∗)2〉 do not appear to collapse

as well as those for 〈(δu∗)2〉. This is partly due to the use of the relation 〈ε〉iso =

15ν〈(∂u/∂x)2〉 which forces the collapse of 〈(δu∗)2〉 at small r∗. The derivative variances
indicate departures from isotropy in each wake. The variance 〈(∂v/∂x)2〉 is consistently
greater than 〈(∂u/∂x)2〉 in each wake but the magnitude of the excess differs slightly

in each case, which is consistent with the imperfect collapse of 〈(δv∗)2〉 at small r∗.
There is a marked effect outside the dissipative range on both 〈(δu∗)2〉 and, more

especially, 〈(δv∗)2〉. In particular, the distribution of 〈(δv∗)2〉 is sensitive to the way
energy is injected into the large scales. Associated with the significant changes in
〈v2〉/〈u2〉 and Lv/Lu between the different wakes are appreciable variations in both

the shape and magnitude of 〈(δv∗)2〉 over what can, at best, be tenuously described as
the inertial (or scaling) range. Oscillations are observed beyond the upper end of this
range for the porous-body wakes, consistent with the strong periodicity evident in the
autocorrelations of v for the screen-strip and screen-cylinder wakes. It is not possible
to identify a range of r∗ for which the local derivatives of 〈(δu∗)2〉 and 〈(δv∗)2〉
may be considered to be constant, so that the concept of a K41 inertial range is
strictly not valid since unique values of scaling exponents cannot be determined. The
use of the ESS method provides estimates of scaling exponents which are ‘relative’
to 〈|δu|3〉. These estimates indicate that the magnitude of the transverse exponent
exceeds that of the longitudinal exponent in the porous-body wakes, an indication
consistent with that inferred from the behaviour of the local slopes of the second-
order structure functions (figure 9) and the spectra (figure 19). The latter do not
reflect the influence of the large-scale anisotropy outside the dissipative range as
sensitively as the structure functions, apparently as a result of the different types of
constraints that exist between spectra and structure functions. However, outside the
dissipative range, the local slope of φv(k1), like that of 〈(δv)2〉, is steepest for the wake
of the screen strip. This behaviour is consistent with the large values of 〈v2〉/〈u2〉
and small values of Lv/Lu in that flow. The magnitude of Cε, the mean energy
dissipation rate parameter, is also smallest in this flow; in particular, the results of
figures 2 and 5 indicate an inverse relationship between Cε and the anisotropy of the
large-scale motion, as measured by 〈v2〉/〈u2〉 but also underline the dependence that
exists, at least at moderate Reynolds numbers, between small and large scales. At
the level of velocity derivative variances, there is little evidence to suggest that the
departure from isotropy is different in the screen-strip wake than in the other wakes.
However, the large magnitude and oscillatory behaviour of 〈(δv)3〉 in the screen-strip
wake (figure 11) highlights the strong anisotropy, observed in this flow, outside the
dissipative range.

There is evidence, albeit limited, to suggest that the difference between longitudinal
and transverse scaling exponents will, when Rλ is fixed, depend on both 〈v2〉/〈u2〉
and Lv/Lu. Such a dependence is consistent with the empirical model proposed by
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Romano & Antonia (2001). When both Rλ and 〈v2〉/〈u2〉 are kept constant, as was the
case for the screen and square-cylinder wakes, the difference between the exponents
reflects the measured difference in the length scale ratio Lv/Lu.

The present results tend to suggest that the differences observed between the
different wakes cannot simply be ascribed to whether the wake generator is solid or
porous. Although the two porous body wakes are characterized by a relatively strong
periodicity (e.g. figure 3), the significant differences observed between the screen-strip
and screen-cylinder wakes suggest that the shape of the generator is also important.

On the basis of the present data, obtained at moderate Rλ, it is difficult to make
any authoritative comment on whether small-scale turbulence becomes universal at
very large Rλ. The data obtained over a much larger range of Rλ (e.g. Pearson &
Antonia 2001) are not inconsistent with an approach towards such a state. However,
the present data suggest that, for moderate-Rλ flows, the properties of small-scale
turbulence, especially those associated with a scaling range, depend not only on Rλ
but also on the way the energy is injected into the large scales. Figures 7 and 8
clearly indicate that the effect of initial conditions, which leads to different levels of
large-scale anisotropy, is at least as important as that which occurs, in any particular
flow, due to a variation in Rλ.

R. A. A. acknowledges the continuing support of the Australian Research Council.
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